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An Improved Effect Size for Single-Case Research:
Nonoverlap of All Pairs

Richard I. Parker
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Texas A & M University
Nonoverlap of All Pairs (NAP), an index of data overlap
between phases in single-case research, is demonstrated and
field tested with 200 published AB contrasts. NAP is a novel
application of an established effect size known in various
forms as Area Under the Curve (AUC), the Common
Language Effect Size (CL), the Probability of Superiority
(PS), the Dominance Statistic (DS), Mann-Whitney’s U, and
Sommers D, among others. NAPwas compared with 3 other
non-overlap-based indices: PND (percent of nonoverlapping
data), PEM (percent of data points exceeding the median),
and PAND (percent of all nonoverlapping data), as well as
Pearson’s R2. Five questions were addressed about NAP: (a)
typical NAP values, (b) its ability to discriminate among
typical single-case research results, (c) its power and
precision (confidence interval width), (d) its correlation
with the established effect size index, R2, and (e) its
relationship with visual judgments. Results were positive,
the new index equaling or outperforming the other overlap
indices on most criteria.

NONOVERLAPPING DATA AS AN indicator of perfor-
mance differences between phases has long been an
important part of visual analysis in single-case
research (SCR) (Sidman, 1960) and is included in
recently proposed standards for evaluating SCR
(Horner et al., 2005). The extent to which data in
the baseline (A) versus intervention (B) phases do
not overlap is an accepted indicator of the amount
of performance change. Data overlap between
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phases has also been quantified. Twenty-five years
ago, Scruggs and Casto (1987) defined “percent of
nonoverlapping data” (PND) as the percent of
phase B datapoints which exceed the single highest
phase A datapoint. More recently, Parker, Hagan-
Burke, and Vannest (2007) defined the “percent of
all nonoverlapping data” (PAND) as the “percent
of all data remaining after removing the minimum
number of datapoints which would eliminate all
data overlap between phases A and B.” A third
overlap index was also published recently, Ma’s
(2006) PEM, the “percentage of phase B datapoints
exceeding the median of the baseline phase.” The
present paper describes a fourth index of nonover-
lapping data, designed to remedy perceived weak-
nesses of these three. Briefly, those weaknesses are:
(a) lack of a known underlying distribution
(disallowing confidence intervals) (PND); (b)
weak relationship with other established effect
sizes (PEM); (c) low ability to discriminate among
published studies (PEM, PND); (d) low statistical
power for smallN studies (PND, PAND, PEM); and
(e) open to human error in hand calculations from
graphs (PND, PAND, PEM).
Quantifying results in SCR is not always needed;

an approximate visual judgment of “a lot” versus
“little or none” may suffice for practitioners
making in-house, low-stakes decisions (Parsonson
& Baer, 1992). Quantifying data overlap is most
needed when the interventionist needs to make
more precise statements about the amount of
improvement—for example, for (a) documenting
evidence of clinical effectiveness for insurance,
government, and legal entities; (b) comparing the
relative effectiveness of two or more interventions;
(c) providing support for a knowledge base of
“evidence-based practices”; (d) including a study in
meta-analyses; and (e) applying for competitive
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funding. These five instances are not unrelated and
are an increasing part of the scientific practice of
clinical and school psychology (Chambless &
Ollendick, 2001; Kratochwill & Stoiber, 2002).
For example, special educators and school psychol-
ogists are being charged by federal legislation
(IDEA, 2004) with measuring student improvement
within multitiered “Response to Intervention”
models. Student response to Tier 2 and 3 interven-
tions is commonly measured by progress monitor-
ing, with results depicted as a line graph. But
measuring the amount of change with known
precision is best accomplished by an effect size
index. The precision of the index is shown by
confidence intervals around the effect size.
“Nonoverlap of All Pairs” (NAP), presented in

this paper, summarizes data overlap between each
phase A datapoint and each phase B datapoint, in
turn. A nonoverlapping pair will have a phase B
datapoint larger than its paired baseline phase A
datapoint. NAP equals the number of comparison
pairs showing no overlap, divided by the total
number of comparisons. NAP can be calculated by
hand from a SCR graph, from intermediate
statistics available from the Wilcoxon Rank-Sum
Test (Conover, 1999), or directly as Area Under the
Curve (AUC) from a Receiver Operator Character-
istics (ROC) diagnostic test module. Both hand
calculation and computer methods are detailed in
the Method section.
NAP was developed primarily to improve upon

existing overlap-based effect sizes for SCR. But
NAP also offers advantages over parametric
analyses (t-tests, analyses of variance, ordinary
least squares [OLS] regression), which are generally
believed to possess greater statistical power. The
main limitations in using parametric effect sizes are:
(a) SCR data commonly fail to meet parametric
assumptions of serial independence, normality and
constant variance of residual scores (Parker, 2006);
(b) parametric effect sizes are disproportionately
influenced by extreme outliers, which are common
in SCR (Wilcox, 1998); and (c) interpretation of R2

as “percent of variance accounted for” or Cohen’s d
as “standardized mean difference” are alien to
visual analysis procedures (May, 2004; Parsonson
& Baer, 1992; Weiss & Bucuvalas, 1980).
Parker (2006) examined a convenience sample of

166 published SCR datasets and found that 51%
failed the Shapiro-Wilk (Shapiro&Wilk, 1965) test
of normality, 45% failed the Modified Levene
(Brown & Forsythe, 1974) test of equal variance,
and 67% failed a lag-1 autocorrelation test, using
standards suggested for SCR (Matyas & Green-
wood, 1996). Over three-fourths of the datasets
failed one or more of these parametric assumptions
(note: serial independence is also a nonparametric
assumption). Given such datasets, Wilcox pro-
claimed standard OLS regression as, “one of the
poorest choices researchers could make” (Wilcox,
1998, p. 311). He and others have challenged the
accuracy of OLS effect sizes and their confidence
intervals when calculated from small samples with
atypical distributions, as are common in SCR.
Nevertheless, R2 is well-established in group
research and generally believed to be more dis-
criminating and to have superior statistical power,
so it was included as an external standard in this
study. R2 is calculated here in an OLS linear
regression module, with Phase dummy-coded (0/1).
NAP was developed mainly to improve upon

existing SCR overlap-based effect sizes: PND,
PAND, and PEM. NAP should offer five compara-
tive advantages. First, NAP should discriminate
better among results from a large group of
published studies. Our earlier research indicated
less than optimal discriminability by the other three
nonoverlap indices (PND, PAND, PEM). An effect
size showing equal discriminability along its full
length would be most useful in comparing results
within and across studies (Cleveland, 1985). The
second NAP advantage should be less human error
in calculations than the other three hand-calculated
indices. On uncrowded graphs, PND, PAND and
PEM are calculated with few errors, but not so on
longer, more compacted graphs. PAND can be
calculated objectively by a sorting routine, but that
procedure may be confusing. NAP is directly output
from an ROC module as the AUC percent and is
calculated easily from Mann-Whitney U intermedi-
ate output.
A third advantage sought from NAP was

stronger validation by R2, the leading effect size
in publication. Cohen’s d was not calculated for
this paper, as it can be directly computed from

R R =
dffiffiffiffiffiffiffiffiffiffiffiffi

d2 + 4
p

� �
(Rosenthal, 1991; Wolf, 1986).

Since NAP entails more data comparisons (NA×NB)
than other nonoverlap indices, it should relate more
closely to R2, which makes fullest use of data. The
fourth anticipated advantage of NAP was stronger
validation by visual judgments. The reason for that
expectation was that visual analysis relies on multi-
ple and complex judgments about the data, which
should be difficult to capture with simpler indices
such as PEM and PND. NAP is not a test on means
ormedians, but rather on location of the entire score
distribution, and is not limited to a particular
hypothesized distribution shape.
The fifth and final advantage expected from NAP

was greater score precision, indicated by narrower
confidence intervals (CIs). CI width is determined



359nonoverlap all pa i r s
by the particular statistical model used, by the N
used in calculations (narrower CIs for larger Ns),
and by effect size magnitude (narrower CIs for
larger effect sizes). PEM relies on the binomial test,
its N being the number of datapoints in phase B.
PAND can be considered an effect size but is
lacking in some desirable attributes. Two PAND-
derived effect sizes from its 2×2 table contingency
table are Pearson Phi and Risk Difference (RD; the
difference between two proportions). Phi is
obtained from a chi-square test, and RD from a
similar “test of two proportions,” both performed
on the original 2×2 PAND table. Phi and RD are
output with standard errors for calculating CIs,
and RD is usually accompanied by CIs. Both Phi
and RD analyses use as N the total datapoints in
phases A plus B (NA+NB). The final nonoverlap
index, PND, has no known sampling distribution,
so CIs cannot be calculated. The new NAP index,
output as AUC from an ROC module, is accom-
panied by CIs. In addition, CIs are calculated by
specially developed software by Newson (2000,
2002) as add-on macros for Stata statistical soft-
ware. Nonparametric AUC modules are found in
most statistics packages, including NCSS, SPSS,
Stata, StatExact, and SAS, which output the AUC
score, its standard error of measurement, and CIs.
Robust methods for NAP’s CIs have been produced
by Wilcox (1996) in Minitab and S-Plus. Methods
for manual CI calculation are summarized by
Delaney and Vargha (2002).
The overlap index here termed NAP has several

names for slight variations and different areas of
application (Grissom & Kim, 2005). To statisti-
cians, it is best known in its most general form, p
(X1NX2), or “the probability that a score drawn at
random from a treatment groupwill exceed that of a
score drawn at random from a control group.” It
can be quickly derived from UL, or the larger of two
U values from the nonparametric Mann-Whitney U
test (also known as the Wilcoxon Rank-Sum test;
Cliff, 1993). For diagnostic work in medicine and
test development, it is “Area Under the Curve”
(AUC). The qcurveq in AUC is the receiver operator
characteristic (ROC) curve, also known as the
“sensitivity and specificity” curve, for detailing
error types (false positives, false negatives) (Hanley
& McNeil, 1982). Applied to continuous data it is
the Common Language Effect Size (CL) (McGraw
&Wong, 1992). CL was critiqued and extended by
Vargha and Delaney (2000) to cover ordinal and
discrete data, and they renamed the new index the
“Measure of Stochastic Superiority.” Similarly, Cliff
(1993) promoted use a slight variation of AUC,
renaming it the “Dominance Statistic” (d). Still
other variations exist, often differing by how ties are
handled and by their score ranges: AUC ranges from
.5 to 1 (or 0 to 1 to include deteriorating scores),
Cliff’s d ranges from 0 to 1, and McGraw and
Wong’s CL ranges from –1 to +1. Since this overlap
indexwithCIs is obtainedmost readily as AUC, that
is the name utilized from here on.
AUC has been recommended as a broad replace-

ment for Cohen’s d (Acion, Peterson, Temple, &
Arndt, 2006). It is popular in evidence-based
medicine, in which researchers require statistics
which are not saddledwith parametric assumptions,
are easily interpretable, and offer confidence inter-
vals (D'Agostino, Campbell, & Greenhouse, 2006).
“AUC works well with continuous, ordinal and
binary variables, and is robust and maintains
interpretability across a variety of outcome mea-
sures, distributions, and sample characteristics”
(e.g., skewed distributions, unequal variances)
(D'Agostino et al., p. 593). The score overlap
interpretation of AUC is direct and intuitive. AUC
is considered by some to be superior to median shift
(or even mean shift), as these latter methods
overemphasize central tendency. For ill-shaped
distributions, the mean or median may poorly
represent most data points, so an index like AUC,
which emphasizes all data values equally, is
preferred (Delaney & Vargha, 2002; Grissom &
Kim, 2005).
Applied to SCR, NAP (AUC) can be defined as

“the probability that a score drawn at random from
a treatment phase will exceed (overlap) that of a
score drawn at random from a baseline phase,”with
ties receiving one-half point. A simpler wording is
“the percent of non-overlapping data between
baseline and treatment phases.” This concept of
score overlap is identical to that used by visual
analysts of SCR graphs and is the same as is
calculated in the other overlap indices, PAND, PEM
and PND.NAP’smajor theoretical advantage is that
it is a comprehensive test of all possible sources of
data overlap, i.e. all baseline versus all treatment
datapoint comparisons, a total of NA×NB pairs.
NAP is a probability score, normally ranging from
.5 to 1. If datapoints from two phases cannot be
differentiated, then AUC=.5; there is a fifty percent
chance that scores from one group will exceed those
of the other. For deteriorating performance during
treatment phase, one must take the extra step of
specifying in an AUC module the Control or
Baseline phase as the high score. By doing so, the
AUC range is extended to 0 to 1. Any score from0 to
.4999 represents deteriorating performance.
Given two samples with normal distributions and

equal variance (unlikely in SCR), AUC or NAP can
be estimated from Cohen’s d: AUC=1-.5⁎(1 - d/
3.464)2 (Acion et al., 2006). The formula for
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estimating Cohen’s d from NAP is: d=3.464⁎(1-
√(1-NAP)/.5). So Cohen’s (1988) estimates of small,
medium and large d values (.2, .5, .8) correspond to
NAP (on a .5 to 1 scale) values of .56, .63, and .70,
respectively. And using the equivalence, d=2R/√(1-
R2) (Wolf, 1986), the three NAP values correspond
to R2 values of .01, .06, and .14, respectively. But
our results will show that Cohen’s guidelines do not
apply to SCR.
This paper first illustrates with a fabricated dataset

the calculation of NAP and the three other non-
overlap indices. Next, all four indices, alongwithR2,
are applied to a sample of 200 phase AB contrasts
from 122 SCR designs, published in 44 articles. This
field test informs us about the newNAP index: (a) its
typical values, (b) its ability to discriminate among
typical single-case research results, (c) its power and
precision (CI width), (d) its correlation with estab-
lished indices of magnitude of effect, and (e) its
relationship with visual judgments.
Method
A short AB graph has been fabricated to illustrate
how the four overlap indices are calculated (see
FIGURE 1 Illustration of four overlap-based methods for SCR calcu
nonoverlapping data; PAND=percent of all nonoverlapping data; PEM=
Figures 1A through D). Raw data for phase A are:
4, 3, 4, 3, 4, 7, 5, 2, 3, 2, and for phase B are: 5, 9, 7,
9, 7, 5, 9, 11, 11, 10, 9.
The PND method (Scruggs & Casto, 1987)

locates the most positive datapoint in phase A and
then calculates the percent of phase B datapoints
that exceed it. For the example dataset, the most
positive datapoint is the 6th (in time order) in phase
A (circled in Figure 1A). Seven phase B datapoints
exceed it, so PND=7/11=64%.
The PEM method (Ma, 2006) first identifies the

median level in phase A (represented by the arrow in
Figure 1C) and then calculates the percent of phase
B datapoints above that level. PEM=11/11=100%.
The PAND method (Parker et al., 2007) finds the

smallest number of datapoints from either phase
whose removal would eliminate all data overlap
between two phases. For these data, there is just one
best solution; for other datasets multiple solutions
may exist. Two datapoints need removal (circled in
Figure 1B). PAND is calculated as all remaining
datapoints (21-2=19) divided by the total N:
PAND=19/21=90%. PAND can be converted
either to Phi, a bonafide effect size, or to Risk
Difference (RD) (Cohen, 1988). To make the
lating change (NAP=nonoverlap of all pairs; PND=percent of
percent of data points exceeding the median).
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conversions, datapoints needing and not needing
removal from each phase are entered into a 2×2
table. Phi is obtained from a chi-square analysis of
these data (Phi= .82). RD is obtained from a “two
independent proportions” analysis of these data
(RD=.81). In a balanced table, Phi and RD are
identical. CIs are sometimes output for Phi but
nearly always for RD. Calculation of Phi and RD
are detailed in Parker et al. (2007), and in Parker,
Vannest, and Brown (in press), respectively.
The NAP hand-calculation method (Figure 1D)

compares, in turn, each phase A datapoint with
each phase B datapoint. Arrows in Figure 1D show
these paired comparisons and results for only one
phase A datapoint, the 6th in order (value=7). NAP
hand calculation has two procedural options. One
may begin counting all nonoverlapping pairs, or by
counting all overlapping pairs, and subtract from
the total possible pairs to obtain the nonoverlap
count. The total possible pairs (total N) is the
number of datapoints in phase A times phase B
(NA×NB), here 10×11=110. For most datasets, it is
faster to begin counting only overlap, then subtract
from the total possible pairs. The notations on
Figure 1D are for counting overlap.
For the example dataset, only two of the phase A

datapoints show any overlap, those with values of 7
and 5. We begin with the 7, and compare it, in turn,
with each phase B datapoint. An overlap counts as
one point, and a tie counts as half a point. For the
Figure 1 example, comparing the 6th phase A
datapoint (value=7) with all phase B datapoints
yields: (1, 0, .5, 0, .5, 1, 0, 0, 0, 0, 0)=3. Comparing
the 7th phase A datapoint (value=5) with all phase B
datapoints yields: (.5, 0, 0, 0, 0, .5, 0, 0, 0, 0, 0)=1.
Thus, the overlap sum is 3+1=4. Subtracting from
the total possible pairs, we get 110 – 4=106. Finally,
NAP=106/110=96%.
NAP also is obtained directly as the AUC percent

from a ROC analysis. We used NCSS (Hintze,
2006), where “ROC Curves” is located under
“Diagnostic Tests.” Settings to use are as follows:
“Actual Condition Variable=Phase , Criterion
Variable = Scores, Positive Condition Value=B
(phase B), Test Direction=High×Positive.” Output
is “Empirical AUC=.96,” along with CIs.
NAP also can be calculated from intermediate

output of the Wilcoxon Rank-Sum Test, usually
located in statistical packages within “Two Sample
t-Test” or “Non-Parametric Test” modules. Wil-
coxon yields a “U” value for each phase, defined as
“…the number of times observations in one sample
precede observations in the other sample in rank-
ing” (Statsdirect Help, 2008). The larger U value
(UL) for phase B equals the number of nonoverlap-
ping data comparisons (ties weighted .5). UL
divided by the total number of data comparisons
(NA×NB) equals NAP. For our example data, the
Wilcoxon UL is 106, and NAP=106/110=.96, the
same result obtained by hand.
From our example data, similar results were

obtained by the overlap indices PAND (90%),
PEM (100%), and NAP (96%), whereas PND is
smaller (64%). And the PAND-derived effect sizes
are RD (81%) and Phi (.82). But the size of an
index is less important than attributes such as its
power and precision (indicated by CI width), its
relatedness to established indices (criterion-related
validity), its ability to discriminate among typical
published results (indicated by a distribution
probability plot), and its agreement with visual
judgments.

confidence intervals

CIs indicate the confidence or assurance we can
have in an obtained effect size, also termed
“measurement precision.” Awide confidence inter-
val or band around an effect size indicates low
precision, allowing little trust or assurance in that
obtained value. Precision is directly related to the
statistical power of a test; a test with low power
cannot measure medium-sized and smaller effects
with precision. CIs are strongly recommended for
effect sizes by the 1999APATask Force on Statistical
Inference (Wilkinson & The Task Force on Statis-
tical Inference, 1999), and by the APA Publication
Manual (2001). CIs are interpreted as follows: for a
calculated effect size of .55, and a 90% confidence
interval: .38b .55b .72, we can be 90% certain that
the true effect size lies somewhere between .38 and
.72 (Neyman, 1935). Omitted from this comparison
was PND, for which CIs cannot be calculated
because we do not know its chance level nor its
underlying sampling distribution.
Exact CIs for PEM are provided by a binomial

single-sample proportions test against a 50%
chance level, easily computed from most statistics
packages. From Figure 1C (11/11=100%), the
exact 90% CI for PEM is: .87b1.00b1.00. For
PAND, the same single-sample proportions test can
provide CIs. The PAND of 90% is tested against a
50% chance level withN=NA+NB=21 to yield this
90%CI: .73 b .90 b .98, a CI width of .25. But as an
effect size, PAND is less suitable than two respected
indices which can be calculated from a 2×2 table of
PAND data: Pearson’s Phi and Risk Difference
(RD). From a chi-square test on the 2×2 table, Phi
with 90% CI is: .46 b .82 b1.0, a CI width of .54.
From a two proportions test on the same data, RD
with 90% CI is: .49 b .80 b .95, a CI width of .46.
Details for calculating these Phi and RD CIs are
found in Parker et al. (2007; 2009).



Table 1
Key percentile ranks for four overlap indices (NAP, PND, PAND,
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CIs for NAP are available with the AUC statistic as
direct output. For this example, the 90% CI is: .84
b .96 b .99, a CI width of .15. From a total N of 18–
20, we can expect reasonably accurate 90% CIs.
From a total N of 30, we can expect accurate 95%
CIs. And from an N of 60, accurate 99% CIs can be
expected (Fahoome, 2002). Procedures have been
developed for narrower CIs (greater measurement
precision), which are also robust against unequal
variances (Delaney&Vargha, 2002), but they are not
yet available as standard output from general
statistics packages. As noted earlier, some CI algo-
rithms are available as add-ons to Stata and S-Plus.

field test

The four overlap indices were applied to a
convenience sample of 200 phase A versus B (AB)
contrasts from 122 SCR designs in 44 published
articles (available on request from the first author).
The sample was composed of 166 AB contrasts
collected 5 years ago, plus 34 contrasts recently
added, to total 200. Datasets were obtained from
ERIC and PsychLIT literature searches for terms
such as: “single case,” “single subject,” “baseline,”
“multiple baseline,” “phase,” AB, ABA, ABAB, etc.
The first 300 articles located were culled to find
those with graphs clear and large enough for
accurate digitizing. The first 200 useable contrasts
were chosen from those articles. The AB contrasts
were chosen without regard for dataseries length,
intervention effectiveness, design type, etc. All clear,
useable graphs were digitized using I-Extractor
software (Linden Software Ltd, 1998). The litera-
ture search and digitizing procedure are described
in more detail in previous articles (Parker et al.,
2005; Parker & Brossart, 2003).
For the 200 selected AB contrasts, the median

length of a full dataseries was 18 datapoints, with
an interquartile range (IQR; middle 50% of scores)
of 13 to 24. Phase A had Median=8, IQR=5-12,
and Phase B length had Median=9, IQR=5–13.
Few articles included statistical analyses, and
none provided CIs. Even for weak and moderate
results, visual analysis alone was used to draw
conclusions.
PEM) and the standards R , based on 200 published samples

10th Percentile Rank Values 90th

25th 50th 75th

NAP .50 .69 .84 .98 1.00
PND 0.00 .24 .67 .94 1.00
PAND .60 .69 .82 .93 1.00
PEM .50 .79 1.00 1.00 1.00
R2 .05 .16 .42 .65 .79

Note. NAP=nonoverlap of all pairs; PND=percent of nonoverlap-
ping data; PAND=percent of all nonoverlapping data; PEM=per-
cent of data points exceeding the median.
Results
The field test with 200 published AB contrasts was
conducted to inform how NAP performs on typical
datasets: (a) What are typical NAP effect size
magnitudes? (b) How well does NAP discriminate
among typical published SCR results? (c) How
much confidence can one have in the calculated
NAP values (their precision)? (d) How does NAP
relate to the other indices? and (e) How well does
NAP match visual judgments of client improve-
ment? To answer these questions, NAP, PND,
PAND, PEM and Pearson’s R2 were all calculated
on the 200 contrasts.

typical values

Table 1 presents key percentile ranks for each of
seven indices. The tabled percentile ranks show R2

with lower scores than the four overlap indices.
This is especially noticeable in the upper ranges; all
four overlap indices hit their maximum (1.00) at the
90th percentile. At the 50th percentile, the overlap
index values are about double R2 , and for values at
the 10th percentile, some differences are by a factor
of 10. The exception is PND, which hits the floor of
zero at the 10th percentile. For NAP, a full
distribution would show that the 10th percentile
value of .50 does not represent a floor effect. The
small number of graphs with deterioration results
earned scores between 0 and .50.
All of the overlap magnitudes differ enough from

R2 that they need new interpretation guidelines. For
most of the studies sampled, authors described quite
successful interventions, for which one would antici-
pate large effects. Even so, overlap results were much
larger than Cohen’s guidelines for point-biserial R2

values: qlargeq (R2=.14); qmediumq (R2=.06); and
qsmallq (R2=.01) (Cohen, 1988, p. 82). The tabled
effect size magnitudes underscore the warning by
Cohen and others that his guidelines are from largeN
social science group research and should not be
routinely applied in other contexts (Cohen, 1988;
Kirk, 1996;Maxwell,Camp,&Avery, 1981;Mitchell
& Hartmann, 1981; Rosnow & Rosenthal, 1989).

discriminability

The usefulness of any new index will depend in
part on its ability to discriminate among results
from published studies. Given a large sample, a
uniform probability distribution can indicate dis-
criminability (Cleveland, 1985). Distributions with



FIGURE 2 Uniform probability plots for five indices of change in
SCR (NAP=nonoverlap of all pairs; PND=percent of nonover-
lapping data; PAND=percent of all nonoverlapping data;
PEM=percent of data points exceeding the median).
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high discriminability appear as diagonal lines,
without floor or ceiling effects, and without gaps,
clumping, or flat segments (Chambers, Cleveland,
Kleiner, & Tukey, 1983; Hintze, 2006). Figure 2
shows superior probability distributions for Pear-
son’s R2, forming a nearly diagonal line across the
score range. The next best distributions are by
NAP and PAND, both of which show ceiling
effects around their 80th percentiles. So NAP and
PAND do not discriminate well among the most
successful 20% of interventions. PND may appear
similar to these two at first glance, but it also
shows a floor effect around its 18th percentile.
Also, the ceiling effect of PND is more severe, near
its 75th percentile. So PND discriminates poorly
among 18+25=43% of the published studies. The
most problematic distribution is PEM, with no
floor effect, but a major ceiling effect — over 50%
of the samples scored a perfect 100%.

level of confidence in effect sizes

The confidence one can have in an obtained effect
size is reflected in its CIwidth and the standard error
used to calculate the CI. Narrower CIs are generally
Table 2
Ninety-percent confidence intervals on six indices of change, from small

N=13

25th %ile 50th %ile

NAP .33b .67b .87 .49b .84b .95
PAND .42b .77b .88 .59b .88b .97
PND ?b .26b? ?b .70b?
PEM .34b .80b .94 .65b1.00b1.00
R2 0b .16b .45 .04b .42b .68

Note. Ns are numbers of datapoints in a single data series, across p
nonoverlapping data; PAND=percent of all nonoverlapping data; PEM=
believed to come from parametric analyses such as t-
tests, analysis of variance, and OLS regression
rather than nominal-level nonparametric tests such
as NAP. Ninety percent CIs were calculated for
benchmark values of NAP, PAND, PEM, and R2.
CIs could not be calculated for PND because that
index lacks a known sampling distribution. From
the 200 datasets, CIs were calculated for small and
large sample sizes (N=13 and N=24, respectively)
and for weak and medium results (25th and 50th

percentile values, respectively).
A binomial proportions test provides CIs for PEM

and PAND. The PAND analysis N was NA + NB .
The N for the PEM analysis was NB only. Pearson
R2 values were bootstrap estimates from individual
studies whichmost closely met the criteria of sample
size and effect size magnitude. NAP CIs were the
AUC confidence intervals from an ROC test
module. Thoughmore precise intervals are available
from specialized software, they were not explored
here. ForR2, exact, asymmetrical CIs were obtained
from the stand-alone R2 utility, one of the few with
this capability (Steiger & Fouladi, 1992).
Table 2 contains 90% CIs for weak and medium

effect sizes. For example, for weak results and a
small N (13) for NAP, the Table gives: .33 b .67
b .87. This is interpreted: “We can be 90% sure that
the true effect size for the obtained value of .67 is
somewhere between .33 and .87 (a spread of .54
points).” PAND showed the greatest precision, its
four tabled CI widths averaging .30. Second place
was earned by NAP, averaging .43 over its four CIs.
Ranked third was R2, with tabled CI widths
averaging .48. In last place was PEM, which
produced artificially narrow CIs because two of
them hit the 1.0 ceiling. Without the 1.0 ceiling,
PEM’s CI widths would average about .53.

relatedness to r2

The most commonly published effect sizes in the
social sciences are members of the R2 family
(including Eta2) (Kirk, 1996), though they entail
data assumptions that single case studies often
and medium sample sizes, and for weak and medium size effects

N=24

25th %ile 50th %ile

.40b .67b .80 .62b .84b .94

.61b .77b .91 .70b .88b .96
?b .26b? ?b .70b?
.53b .80b .93 .80b1.00b1.00
0b .16b .38 .17b .42b .63

hase A and B. NAP=nonoverlap of all pairs; PND=percent of
percent of data points exceeding the median.
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cannot meet (Parker & Brossart, 2003). Cohen’s d
is saddled with those same assumptions. In this
study, R2 served as an external standard for
evaluating the new NAP. The intercorrelation
matrix for the five indices is presented in Table 3.
The matrix was created with Spearman’s Rho
rather than Pearson R to eliminate bias due to
correlating a mix of squared and unsquared terms
and ordinal and interval indices.
Most closely related to R2 was NAP (Rho=.92)

followed by PAND (.86), and a distance back by
PEM (.75) and PND (.74). PAND and NAP were
closely related (Rho=.93). Most central to the
correlation matrix was NAP, which bore the overall
highest relationships with most other indices. No
Rho for NAP was less than .76. NAP’s strong
relationship with R2 is not coincidental; an
equivalence formula was presented earlier. But
this formula depends on equal variances and
normality of samples. So the reduction from perfect
agreement to .92 reflects nonconforming sample
distributions.

relatedness to visual judgments

Three special education professors with extensive
experience in SCR analysis and publication rated
each of the 200 AB graphs for “amount of client
improvement.” There was no prior training,
calibrating, or discussing among the three raters,
and none had perused any of the graphs previously.
A three-point scale was used for visual judgments:
1= little or no improvement, 2=moderate improve-
ment, 3=strong or major improvement. Agreement
among the three judges ranged from r=.70 to .75,
levels somewhat higher than in previous studies
(DeProspero & Cohen, 1979; Harbst, Ottenbacher,
& Harris, 1991; Ottenbacher, 1990; Park, Mar-
ascuilo, & Gaylord-Ross, 1990). The average
ratings were correlated with each index, using
Spearman’s Rho to eliminate effects due to whether
an index was squared or not. The resulting Rho
validity coefficients were: NAP=.84, PAND=.84;
R2= .82, PND=.71, PEM=.66. NAP and PAND
distinguished themselves by correlating with visual
Table 3
Correlation matrix for six indices of change in SCR designs

NAP PAND PND PEM

PAND .93
PND .76 .73
PEM .81 .72 .45
R2 .92 .86 .74 .75

Note. NAP=nonoverlap of all pairs; PND=percent of nonoverlap-
ping data; PAND=percent of all nonoverlapping data; PEM=per-
cent of data points exceeding the median.
judgments as well as R2. PND was notably weaker,
and PEM much weaker in relating to visual
judgments.
Discussion
This paper presented NAP for single-case research,
a new application of the AUC nonoverlap index
commonly found in medical diagnostic studies.
NAP was field tested with 200 published AB phase
contrasts, along with three other overlap indices
(PND, PEM, PAND) and the standard, R2. The
field test addressed five questions: (a) What are
typical NAP effect size magnitudes? (b) How well
does NAP discriminate among typical published
SCR results? (c) How much confidence can one
have in the calculated NAP values (their precision)?
(d) How does the NAP relate to the other indices?
and (e) Howwell does NAPmatch visual judgments
of client improvement?
Regarding NAP effect size magnitudes, they were

large, and loosely comparable with the other
overlap indices, PAND, PND, and PEM. Most
NAP coefficients were at least double the R2 values,
and perfect NAP scores of 1.0 were not uncommon.
NAP scores at a low 10th percentile equaled .50,
and relatively few scores were below that level
(reflecting deteriorating performance during inter-
vention). NAP scores range .50 to 1.00 for
nondeteriorating performance, but they can easily
be transformed to a 0 to 1.00 range for nondeter-
iorating performance, with deterioration earning
negative scores (Huberty & Lowman, 2000).
PAND showed similar score magnitudes. The
sharply attenuated PEM scores reached the perfect
1.0 as early as the 50th percentile rank. Given the
values obtained, NAP and the other three non-
overlap indices clearly need new interpretation
guidelines. Based on expert visual judgments of
these 200 datasets, we can offer very tentative NAP
ranges: weak effects: 0–.65; medium effects:
.66–.92; large or strong effects: .93–1.0. Trans-
forming NAP to a zero chance level gives these
corresponding ranges: weak effects: 0–.31; medium
effects: .32–.84; large or strong effects: .85–1.0.
On the question of the discriminability of NAP,

its uniform frequency distribution was well-shaped
except for a pronounced ceiling effect at the 80th

percentile. None of the four overlap indices are
capable of discriminating among results from the
most successful intervention studies. This short-
coming of the nonoverlap indices does not exist for
R2, which can measure degree of score separation
beyond complete overlap. PEM and PND distribu-
tions showed major problems which summed to an
inability to discriminate among nearly half of the
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sample datasets. The smaller deficiencies of PAND
and NAP showed them still useful for most (80%)
of the sample studies, but not among the more
successful interventions.
The research question about precision of results

was answered in the favor of PAND, whose CI
widths averaged±.15 points, reflecting a reason-
able degree of certainty. Next most satisfactory
were NAP (±.21 points) and R2 values, (±.24
points), whereas PEM was least satisfactory
(approximately± .26 points). Relative precision of
the nonoverlap techniques was quite predictable
from the N used. The surprise was the relatively
wide CIs around R2 values; however, Acion et al.
(2006) document low power and precision of
parametric statistics when sample data do not
display constant variance and normality. Most
NAP CI widths were not narrow, i.e., lacking in
precision. Methods do exist for more precise NAP
CIs, but they are not yet standard offerings of any
statistics package, so they were not explored here.
Regarding the question of relationship to the R2

standard, NAP was clearly superior to the other
three nonoverlap indices. Besides the close relation-
ship (Rho=.93) with R2, NAP was the most highly
related index with all others. The high .93 correla-
tion between NAP and PAND reflects the con-
ceptual similarity of these two indices.
The question of NAP’s relationship with visual

analysis judgments received a similarly positive
answer. NAP tied with PAND at a substantial
Rho=.84 in predicting visual judgments, a level
almost equaled by R2. The superior distribution of
R2 may be counterbalanced by the nonnormality of
the data, and by the R2 tendency to be heavily
influenced by outliers.
A purpose of this study was finding an efficient

and reliable calculation method. PAND has proved
itself a strong index against most criteria, but hand
calculation can lead to human errors, and the Excel
sorting method of calculation is proving complex.
NAP can be achieved without human error. It is
directly output as the AUC statistic from ROC
analysis with confidence intervals, and it can be
calculated in one step from Mann-Whitney U
output. NAP also can be calculated by hand from
a graph as nonoverlapping datapoints, to give more
meaning to the statistic for traditional visual
analysts.
It is acknowledged that some group researchers

would be hesitant to apply NAP or any analytic
technique for independent groups—parametric or
nonparametric—to single subject time series data.
The concern is about lack of independence within
the time series data. We have two main responses.
First, the problem of serial dependence in SCR
has been studied extensively (Hartmann et al., 1980;
Huitema & McKean, 1991; Sharpley & Alavosius,
1988; Suen & Ary, 1987). It is acknowledged to
exist, and it can be removed prior to analysis,
although in most cases its impact on effect sizes
is minor (Parker, 2006). The second response is
that several respected researchers, while acknow-
ledging the problem of serial independence,
indicate those concerns are outweighed by the
benefits of applying statistical analyses to phase
comparisons (Matyas & Greenwood, 1996). Our
conservative position is to prefer nonparametric
techniques which are least affected by distribution
irregularities.
Single-case research offers unique advantages for

documenting progress and intervention success
with atypical individuals and small groups. Estab-
lishing intervention success requires a strong
research design. But documenting amount of
improvement requires a strong index of magnitude
of change, or effect size. Criteria for a strong effect
size index for SCR include accuracy and efficiency,
precision, interpretability, external validity, and
valid application to ill-conforming data. The
Achilles heels of Cohen’s d and R2 in SCR have
been their unmet data assumptions and their poor
interpretability. Any overlap-based index will have
improved interpretability, and will require few data
assumptions. Where NAP showed greatest
strengths was in accuracy and efficiency of calcula-
tion and in external validation against both R2 and
visual analyst judgments. NAP did not do as well as
PAND in precision (measured by CI width), which
is important for small datasets. So the outcome of
this study pits PAND’s greater precision with NAP’s
greater external validity, as well as its computation
efficiency and accuracy. Another advantage for
NAP is that the index, variously named Area Under
the Curve, Mann-Whitney UL/NA×NB, Common
Language Effect Size, p(X1NX2), Probability of
Superiority, Dominance Statistic, or Sommers D,
etc., has a long and broad history of use. PAND is a
novel index. PAND is anchored by two respected
indices, Phi and Risk Difference, but they are not
themselves overlap indices. PAND is closely related
to these two companion indices (R=.84 to .92), but
not identical to them.
Considering the weak showing of PND in this

and earlier articles (Parker et al., 2007) and the
extensive debate on its appropriateness a decade
ago (Allison & Gorman, 1994), these authors
question further use of that index. Similarly, the
relatively new index, PEM, showed the weakest
performance, confirming results of a recent PEM
study (Parker & Hagan-Burke, 2007). Although
PEM has now been field tested in only three studies,
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two of those showed performance so weak that its
continued use is not recommended.
NAP’s competitive performance against PAND in

this study should be replicated with other published
samples, but the present sample is of respectable
size, among the largest for studies on single-case
methods. Considering the scarcity of large-sample
validations for overlap-based effect size indices,
NAP could be used now. As a new, experimental
index, its use should be monitored, and a cumula-
tive record of its outcomes, strengths, and weak-
nesses should be reviewed regularly.
Since the greatest weakness of NAP appears to be

the width of its CIs as output from AUC, other
newer methods should be systematically evaluated
with real data. The difficulty with Monte Carlo
studies in SCR is that extreme patterns that are
common in real life are rarely seen in simulations. A
typical extreme yet common example from the
present sample of 200 is: 0, 0, 0, 100, 10, 10, 5, 10,
100, 45, 50, 0, 0, 0, 100, 0, 0, 100. The newer
analytic methods that need to be assayed include
those on specialized software and those not yet
integrated into software.
Limitations of this study include its restriction to

simple AB contrasts and lack of consideration of
data trend. The existence of prior positive trend in
phase A is not uncommon in published data
(Parker, Cryer & Byrns, 2006), yet it is a serious
challenge to conclusion validity from simple mean
or median shift tests, as well as from overlap tests.
After establishing the applicability of NAP to
single-case data, three major tasks are foreseen:
(a) improving confidence interval estimation, (b)
making NAP sensitive to linear trend in data, and
(c) applying NAP to more complex designs.
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